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Generalized travel-time curve for seismic waves
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Earthquake Focal Mechanisms or fault plane solution

»Seismic beach balls or earthquake focal
mechanism are used to indicate directions
of movement on regional faults and plate
boundaries on regional tectonic maps
(Sykes, 1967)

»Earthquake generated seismic waves ,
when received at various seismograph
stations all-around the earth tell about the
tectonic  transport/stress  directions,
Internal structure of the earth, stratigraphy
and orientation of the lithospheric fault —«cmmenmim
planes

»The first P-waves measurement at
cluster seismometers Indicate
compression Vs dilation at focus (source
region) (Kearey et al., 2013).



Earthquake Focal Mechanisms

The first P waves motion at the
seismometer Indicates about
compression and dilation at source
region

Upward P waves motion means an
expansion around the focus; downward
P waves motion suggests a contraction
In the source region
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First Motions

> Japanese seismologist in 20" Century started work on first upward
or downward motion of seismic waves recorded at different
seismometers

> Initially it was conceived that different earthquakes produce upward
and downward spikes on seismographs. However later it was
ascertained that a single earthquake could potentially acquire different
spikes at different seismometers that produce from a fault rupture in the
source region.

»Onward the First wave motions were used as slip indicator to
segregate regions of compression and dilatation using beach ball
technique
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ICreo’ring Focal Mechanisms
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Determination of nodal planes
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Energy and Polarity of “First Motions”
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The Earth’s Interior
Oceanic Crust

» According to Airy Mechanism the oceanic and continental crusts are in
isostatic equilibrium (Francheteau, 1983)

» The Oceanic crust is much thinner than the continental Crust.

» Indirect Seismic refraction indicates at average 6—7 km thickness of the
oceanic crust

» The thickness of the oceanic crust depends on the amount of magma
supply at the MOR

»Compare to continental crust ,the oceanic crust stratigraphy remains
uniform

» The Oceanic crust based on direct (Ophiolites) and indirect (seismic
refraction )observations has been divided into three layers.

P velocity Average thickness
(kms™') (km)

Water 1.5 45
Layer 1 1.6-2.5 04
Layer 2 34-6.2 14
Layer 3 6.4-7.0 5.0

Moho
Upper mantle 74-86

Refraction study produced Oceanic
crust structure (Bott, 1982)



Typical

Lithology Thickness
Deep-sea sediments ] ¢. 0.3 km
Basaltic pillow lavas 0.3-0.7 km
Sheeted dike complex 1.0-1.5km
Isotropic gabbro
Foliated gabbro

Plagiogranite
Layered gabbro 2-5 km
Wehrlite
diapir
Wehrlite
Chromite pod =
Ultramafics 500" |
Harzburaite 4 upto.7 km
g | (exposed)
Mafic dikes ‘
Dunite

After Boudier and Nicolas (1985)

Composition and Thickness of the entire
Oceanic Crust and Upper Mantle
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Oceanic Layer 1

»Sampled by extensive drilling and coring (mostly studied in the Atlantic Ocean)
> It consists of unconsolidated pelagic and terrigenous sediments

»The Pelagic sediments comprise manganese nodules, silicic oozes, zeolite and
calcareous oozes

»The terrigenous sediments bring by high velocity turbidity currents

»Layer 1 deposits are preserved in the form of contourites (Stow & Lovell, 1979)
»This layer is 0.4 Km thick

» The thickness of the Layer 1 increases away from the Mid Oceanic Ridge

»Layer 1 varies from Atlantic /Indian to Pacific ocean, the later has huge input of the
terrigenous sediments

»Edgar (1974) divided Layer 1 into different horizon based on seismic refractors
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Oceanic layer 2
»QOceanic Layer 2 thickness varies from1.0— 2.5 km (the DSDP/ODP drill hole 504B; Costa
Rica Rift)
»This layer comprises consolidated sediments and olivine tholeiitic basalt (enriched in Ca and
poor in Na and K; Sun et al., 1979)
»Layer 2 has been divided into sublayer 2A, 2B and 2C based on seismic waves velocities

»Sublayer 2A thickness reaches up to 1km with 30 to 50% porosity. It is highly rubbly and
porous (mostly porous basalt; Purdy, 1987)

»P -wave velocity of 2Ais 2.1 km/s

»Away from Mid Oceanic Ridge this layer convert into sublayer 2B due to filling pores by
secondary quartz , zeolite and calcite. The composition of the 2A is highly affected by
hydrothermal fluids circulation.

»Sublayer 2B is less porous than 2A, it is suggested by higher P -wave velocity

»4.8-5.5 km/s velocity suggests lower porosity for 2B

»Sublayer 3B is one kilometer thick

»5.8-6.2 km/s velocity indicates high proportion of intrusive rocks (sheeted dikes)



Oceanic layer 3

»Based on seismic velocity, the Layer 3, which is the main layer of the oceanlc
crust has been divided into sublayer 3A and 3B

»6.5-6.8 km/s velocity range of the sublayer 3A indicates gabbroic composition

|
»7.0-7.7 km/s velocity range of the sublayer 3B suggests serpentinized ultramafic |

nature of the layer |
|

»This layer has been directly sampled in the North Atlantic by Auzende et al., |
(1989) |
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Obduction of a remnant oceanic and upper mantle rocks onto the
continental crust in the continent-continent collision belts iIs called
ophiolite (Dewey, 1976; Nicolas, 1989)

»QOphiolites are similar in chemistry,

Complete ophiolite Oceanic ) i
sequence s temperature -gradlent, metamorphlg grades
and ore minerals to the oceanic crust
Sediments Layer 1 (Moores, 1982).
Mafic volcanics, commonly
pillowed, merging into } Layer 2 »Seismic velocity structure of ophiolite is
Mafic sheeted dike complex identical to oceanic crust (Salisbury &
High level intrusives Christensen1978)
Trondhjemites } Layer 3 | |
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»Ophiolite complexes render complete profiles of remnant oceanic crusts,
which provide an excellent opportunity to directly study the complete profile of
the oceanic crust and upper mantle

»Ophiolites have been reported from California, Cyprus, Oman, Pakistan,
Newfoundland, New Zealand, Australia and New Guinea etc

»550-km-long and 150-km wide Semail Ophiolite of Oman is the most studied
ophiolite in the word based on its best exposure, volume and preservation
(Searle and Cox, 1999).
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IOphioIite composition
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| Ophlolltes are distinctive assemblage of marine sedlmentary Metamorphlc and
f magmatic rocks

| Ophiolite Sequence from top to bottom

(1) Marine Sedimentary Layer consists of chert (rich in Fe and Mg), deep marine
limestone, shale, submarine volcanogenic sediments and turbidites

1 (2) Pillow basalt and breccia

[ (3) Sub-parallel sheeted dikes. These dikes feed basaltic lava above . They form a
huge portion of the oceanic crust. These dikes form at actively expending
oceanic crust around active mid oceanic ridges

(4) Massive Isotropic Gabbro. This layer of ophiolite also consists of plagiogranite
(trondhjemite, albite granite, or granophyre)

(5) Layered ultramafic-mafic cumulates comprises from bottom to top pyroxene
and olivine cumulate (dunite and peridotite) and Olivine+ Clino-pyroxene +

| Plagioclase cumulates (Gabbro)

| (6) Mantle Peridotite, they usually metamorphosed to serpentine, also called alpine

i peridotite (Best, 2003).
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zone of deceleration
of seismic waves
(hot area)

zone of acceleration
of seismic waves
(cool area)

Seismic tomography

Seismic tomography involves to differentiate
anomalous warmer and cooler zones through
accelerated or decelerated earthquake
seismology (Anderson and Dziewonski,
1984)
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’Accelerated vs decelerated earthquake tomography




\elocity structure of the earth

» Derived by earthquake seismology

»Earth deeper layers have been studied using earthquake seismic waves that traversed the
entire earth

»The continental crust is ascertained by Andrija Mohorovicic in from the seismic waves
produced by the 1909 Croatia earthquake

»Mohorovicic or Moho is universally present beneath the Continental Crust (seismic velocity
~8 km/s)
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Mohorovicic Boundary between the Continental Crust and Upper Mantle



Conrad discontinuity

»Conrad discontinuity was established by Conrad from earthquake seismicity in 1925

» The Seismic wave velocity increases from 5.6 to 6.3 Km/s

» The continental crust was divided into Silica-Alumina rich layer (SIAL) and Silica-

magnesium rich layer (SIMA). The SIAL is the source of granitic magma and SIMA is
the source of basaltic magma (Conrad is not present universally)

(Kearey et al., 2013)
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Variation in seismic wave velocities showing
the major discontinuities of Earth

»The low velocity zone (LVZ) is
universally present for S-waves at 100 and
300 km depth

»Between 410 and 660 km the mantle has
been divided into upper mantle and Lower
mantle based on rapid velocity increase
associated with phase change

»The Gutenberg discontinuity separate the
outer liquid core from the lower mantle at
~2891 km depth (S waves do not transmit
in the liquid outer core

»S-waves transmission and increase in P-
waves velocities at ~ 5150 km depth
Indicate solid inner core
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inner Seismic Structure of the Earth interior

» Inge Lehmann separated the liquid outer core from the solid
inner core using the P-wave refraction pattern in 1936




